Frobenius manifolds and algebraic integrability
نویسنده
چکیده
We give a short review of Frobenius manifolds and algebraic integrability and study their intersection. The simplest case is the relation between the Frobenius manifold of simple singularities, which is almost dual to the integrable open Toda chain. New types of manifolds called extra special Kähler and special F -manifolds are introduced which capture the intersection.
منابع مشابه
Multiplication on the Tangent Bundle
Manifolds with a commutative and associative multiplication on the tangent bundle are called F-manifolds if a unit field exists and the multiplication satisfies a natural integrability condition. They are studied here. They are closely related to discriminants and Lagrange maps. Frobenius manifolds are F-manifolds. As an application a conjecture of Dubrovin on Frobenius manifolds and Coxeter gr...
متن کاملIntegrability of certain distributions associated to actions on manifolds and an introduction to Lie-algebraic control
Results are given on the integrability of certain distributions which arise from smoothly parametrized families of diffeomorphisms acting on manifolds. Applications to control problems and in particular to the problem of sampling are discussed.
متن کاملPainlevé transcendents and two-dimensional topological field theory
Introduction Lecture 1. Algebraic properties of correlators in 2D topological field theory. Moduli of a 2D TFT and WDVV equations of associativity. Lecture 2. Equations of associativity and Frobenius manifolds. Deformed flat connection and its monodromy at the origin. Lecture 3. Semisimplicity and canonical coordinates. Lecture 4. Classification of semisimple Frobenius manifolds. Lecture 5. Mon...
متن کاملPainlevé transcendents in two-dimensional topological field theory
Introduction Lecture 1. Algebraic properties of correlators in 2D topological field theory. Moduli of a 2D TFT and WDVV equations of associativity. Lecture 2. Equations of associativity and Frobenius manifolds. Deformed flat connection and its monodromy at the origin. Lecture 3. Semisimplicity and canonical coordinates. Lecture 4. Classification of semisimple Frobenius manifolds. Lecture 5. Mon...
متن کاملThe Integrability Problem for Lie Equations
The study of pseudogroups and geometric structures on manifolds associated to them was initiated by Sophus Lie and Élie Cartan. In comparing two such structures, Cartan was led to formulate the equivalence problem and solved it in the analytic case using the Cartan-Kâhler theorem (see [2] and [3]). In the early 1950's, Spencer elaborated a program to study structures on manifolds, in particular...
متن کامل